Suppressive Oligodeoxynucleotides Inhibit Cytosolic DNA Sensing Pathways: A Dissertation
نویسندگان
چکیده
The innate immune system provides an essential first line of defense against infection. Innate immune cells detect pathogens through several classes of Pattern Recognition Receptors (PRR) allowing rapid response to a broad spectrum of infectious agents. Activated receptors initiate signaling cascades that lead to the production of cytokines, chemokines and type I interferons all of which are vital for controlling pathogen load and coordinating the adaptive immune response. Detection of nucleic acids by the innate immune system has emerged as a mechanism by which infection is recognized. Recognition of DNA is complex, influenced by sequence, structure, covalent modification and subcellular localization. Interestingly certain synthetic oligodeoxynucleotides comprised of the TTAGGG motif inhibit proinflammatory responses in a variety of disease models. T hese suppressive oligodeoxynucleotides (sup ODN) have been shown to directly block TLR9 signaling as well as prevent STAT1 and STAT4 phosphorylation. Recently AIM2 has been shown to engage ASC and assemble an inflammasome complex leading to the caspase-1-dependent maturation of IL-1β and IL-18. T he AIM2 inflammasome is activated in response to cytosolic dsDNA and plays an important role in controlling replication of murine cytomegalovirus (MCMV). In the second chapter of this thesis, a novel role for the sup ODN A151 in inhibiting cytosolic nucleic acid sensing pathways is described. Treatment of dendritic cells and macrophages with the A151 abrogated type I IFN, TNF-α and ISG induction in response to cytosolic dsDNA. A151 also reduced INFβ and TNF-α induction in BMDC and BMDM responding to the herpesviruses HSV-1 and MCMV but had no effect on the responses to LPS or Sendai virus. In addition, A151
منابع مشابه
Synthetic oligodeoxynucleotides containing suppressive TTAGGG motifs inhibit AIM2 inflammasome activation.
Synthetic oligodeoxynucleotides (ODNs) comprised of the immunosuppressive motif TTAGGG block TLR9 signaling, prevent STAT1 and STAT4 phosphorylation and attenuate a variety of inflammatory responses in vivo. In this study, we demonstrate that such suppressive ODN abrogate activation of cytosolic nucleic acid-sensing pathways. Pretreatment of dendritic cells and macrophages with the suppressive ...
متن کاملCytosolic and Endosomal DNA-Sensing Pathways Differentially Regulate Inflammatory Arthritis, Autoantibody Production, and Bone Remodeling: A Dissertation
Autoimmune diseases such as rheumatoid arthritis (RA) are associated with debilitating chronic inflammation, autoantibody production, articular bone erosions and systemic bone loss. The underlying mechanisms and cell types that initiate these diseases are not fully understood, and current therapies mainly address downstream mechanisms and do not fully halt disease progression in all patients. M...
متن کاملTargeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies
The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated ...
متن کاملSuppression of immune responses by nonimmunogenic oligodeoxynucleotides with high affinity for high-mobility group box proteins (HMGBs).
The activation of innate immune responses by nucleic acids is central to the generation of host responses against pathogens; however, nucleic acids can also trigger the development and/or exacerbation of pathogenic responses such as autoimmunity. We previously demonstrated that the selective activation of nucleic acid-sensing cytosolic and Toll-like receptors is contingent on the promiscuous se...
متن کامل